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Flexibility in flapping foil suppresses
meandering of induced jet in absence of

free stream
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Thrust-generating flapping foils are known to produce jets inclined to the free
stream at high Strouhal numbers St = fA/U∞, where f is the frequency and A is
the amplitude of flapping and U∞ is the free-stream velocity. Our experiments, in
the limiting case of St→∞ (zero free-stream speed), show that a purely oscillatory
pitching motion of a chordwise flexible foil produces a coherent jet composed of
a reverse Bénard–Kármán vortex street along the centreline, albeit over a specific
range of effective flap stiffnesses. We obtain flexibility by attaching a thin flap to the
trailing edge of a rigid NACA0015 foil; length of flap is 0.79 c where c is rigid foil
chord length. It is the time-varying deflections of the flexible flap that suppress the
meandering found in the jets produced by a pitching rigid foil for zero free-stream
condition. Recent experiments (Marais et al., J. Fluid Mech., vol. 710, 2012, p. 659)
have also shown that the flexibility increases the St at which non-deflected jets
are obtained. Analysing the near-wake vortex dynamics from flow visualization and
particle image velocimetry (PIV) measurements, we identify the mechanisms by which
flexibility suppresses jet deflection and meandering. A convenient characterization of
flap deformation, caused by fluid–flap interaction, is through a non-dimensional
‘effective stiffness’, EI∗ = 8 EI/(ρ V2

TEmax
sf c3

f /2), representing the inverse of the flap
deflection due to the fluid-dynamic loading; here, EI is the bending stiffness of
flap, ρ is fluid density, VTEmax is the maximum velocity of rigid foil trailing edge,
sf is span and cf is chord length of the flexible flap. By varying the amplitude
and frequency of pitching, we obtain a variation in EI∗ over nearly two orders of
magnitude and show that only moderate EI∗ (0.1 . EI∗ . 1) generates a sustained,
coherent, orderly jet. Relatively ‘stiff’ flaps (EI∗ & 1), including the extreme case of
no flap, produce meandering jets, whereas highly ‘flexible’ flaps (EI∗ . 0.1) produce
spread-out jets. Obtained from the measured mean velocity fields, we present values
of thrust coefficients for the cases for which orderly jets are observed.
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1. Introduction
Thrust generation by flapping foils has been extensively investigated in numerous

studies (Triantafyllou, Triantafyllou & Yue 2000; Triantafyllou, Techet & Hover
2004, and references therein). Inspired by the observation that most thrust-generating
appendages (wings and fins) of natural swimmers and flyers are flexible to varying
degrees (Wootton 1999; Daniel & Combes 2002), some recent studies have looked at
flapping flexible foils (Shyy, Berg & Ljungqvist 1999; Shyy et al. 2010). While most
studies are with forward velocity/free-stream flow, very few explore the limit of zero
free-stream velocity (e.g. Freymuth 1990; Gustafson, Leben & McArthur 1992; Wang
2000; Lai & Platzer 2001; Shinde & Arakeri 2013), and even fewer explore flexible
foils with zero free-stream velocity (e.g. Heathcote, Martin & Gursul 2004; Heathcote
& Gursul 2007; Eldredge, Toomey & Medina 2010). In this paper, we consider a
case of pure pitching (rotary oscillations) of a flexible foil under zero free-stream
condition, a case which has not been studied previously.

At high Strouhal numbers, it has been observed that the jet and correspondingly
the thrust from a rigid flapping foil are deflected at some angle to the free-stream
direction; Strouhal number, St = fA/U∞, where f is flapping frequency, A is trailing
edge excursion and U∞ is free-stream speed. Godoy-Diana, Aider & Wesfreid (2008)
characterize the wake and show that a reverse Bénard–Kármán vortex jet inclined to
the free stream is obtained for St& 0.4. Other studies also report deflected jets at high
St (e.g. Lewin & Haj-Hariri 2003; von Ellenrieder & Pothos 2008; Godoy-Diana et al.
2009; Cleaver, Wang & Gursul 2012). For St . 0.4, the jet is symmetric. Convection
of vortices away from the place of shedding with appropriate spacing between them
is central to the formation of a symmetric reverse Bénard–Kármán vortex street.
When present, the free-stream convects the vortices after being shed and is a key
reason to form a symmetric jet. Rearrangement of the terms in Strouhal number as
St= [A/U∞]/[1/f ] reveals that St is the ratio of two time scales characterizing vortex
convection and formation, respectively. At high St, after it is shed a vortex is not
convected away fast enough to make space for a new one; successively shed vortices
are closely spaced leading to dipole formation and jet inclination (Godoy-Diana
et al. 2009). Analogous to this in case of three-dimensional flows, recently (Dewey,
Carriou & Smits 2012) observed the formation of bifurcated jets when the vortex
rings self-induce velocities enough to pull the rings away from the centreline of the
flow field. For rigid as well as flexible heaving foils, Heathcote & Gursul (2007) find
that the inclination angle of the jet reduces with decrease in St (i.e. increase in U∞).
For the limiting condition of St tending to infinity (U∞ = 0), non-symmetric jets are
observed for heaving and pitching rigid foils (Freymuth 1990; Gustafson et al. 1992;
Lai & Platzer 2001); the jets meander across the centreline either quasiperiodically
(Heathcote & Gursul 2007, for purely heaving motion), or continually and randomly
(Shinde & Arakeri 2013, for purely pitching motion).

Marais et al. (2012) recently showed that chordwise flexibility increases separation
between successively shed vortices and prevents jet inclination up to St = 1.2
compared with the value of St' 0.4 for rigid foils. We consider the limiting condition
of St→∞ (U∞ = 0) and show that our chordwise flexible foil generates a coherent,
unidirectional jet with the corresponding thrust aligned along the centreline, for a
particular range of values of effective flexibility. The paper is organized as follows.
Section 2 describes the experiments, and the non-dimensional numbers relevant to the
flexible structure–fluid interaction problem presented in the paper. We also propose
here a convenient non-dimensional stiffness parameter to characterize deformation
of the flexible flap. In § 3, we describe the instantaneous and mean flow structure.
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FIGURE 1. (a) Schematic of the experimental set-up. Spacers with circular cross-section
are away from the foil so as to not affect the flow. Here x, y and z are the streamwise,
transverse and spanwise directions, respectively; u, v and w are the corresponding velocity
components. (b) Sectional view of the airfoil. Dimensions are in millimetres. (c) Optical
arrangement for visualizations of the flow and the flap motion. Laser light is passed
perpendicular to the airfoil chord axis. Flap is blackened except for a small portion near
TE, which is transparent, so as to identify start of the flap–TE junction. (d) Optical
arrangement for PIV. Laser light is passed from the TE end side along the airfoil chord
axis in order to minimize the shadow cast by the airfoil; the flap is transparent for the
PIV experiments that made it possible to get velocity data on both its sides.

In § 4, we show how flexibility suppresses jet deflection and meandering. Section 5
presents a parametric study. We also present values of thrust coefficients, which were
obtained from the measured mean velocity fields. Section 6 presents the conclusions.

2. Experiments
Experiments are conducted in water in a glass tank (0.8 m × 0.8 m × 0.35 m).

A servo motor sinusoidally oscillates the airfoil confined between two end-plates
(figure 1a). The motor (30 W AC Panasonic A series RAMA3AZA1E) is driven by
a Panasonic digital AC servo drive (MSDA3A3A1A, Type 1), and is controlled by
Galil Motion Control card DMC 1425. The rigid airfoil has an NACA0015 profile
with 38 mm chord c and 100 mm span (figure 1b). At the trailing edge, we firmly
append along the rigid chord line a chordwise flexible transparent flap (30 mm chord
cf , 100 mm span sf ) made from 0.05 mm thick polythene sheet. The mass of the
flap (= 0.15 g) is negligible compared with the fluid added mass (≈70 g, obtained
by treating the flap as a plate moving normal to itself). The bending stiffness of the
flap EI = 3.15× 10−7 N m2, where E is Young’s modulus and I is moment of inertia
of flap cross-section. In this paper, TE denotes trailing edge and FT denotes flap tip
at its free end; quantities with overbar (e.g. q) and star (q∗) indicate their time-mean
and non-dimensional form (of q), respectively.

The pitching motion prescribed to the rigid foil is θ = θmax sin(2πft), where θ is
instantaneous pitching angle, t is time, θmax is amplitude and f is frequency of pitching.
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We studied 12 cases: 3 amplitudes (±10◦, ±15◦, ±20◦) and 4 frequencies (1, 2, 3,
4 Hz). We discuss in detail, in §§ 3 and 4, a representative case that falls nearly in
the middle of the parameter range studied, namely θmax=±15◦ and f = 2 Hz; we call
this the ‘standard case’. The distance of the nearest wall of the tank from the airfoil
in the x direction is more than 10 chords and in the y direction more than 8 times
∆TEmax (i.e. y-amplitude of TE deflection) for the largest-amplitude case (θmax=±20◦).

The main diagnostics are visualizations and particle image velocimetry (PIV). Flow
is recorded in a horizontal plane along the foil midspan (figure 1a) illuminated
by a ∼1 mm thick laser sheet. We used two optical arrangements, one for
visualization experiments (figure 1c) and another for PIV measurements (figure 1d).
For visualization experiments, we used fluorescein disodium salt or polystyrene
particles (75–100 µm), a continuous argon–ion laser (4 W, Spectra-Physics, Stabilite
2017) for illumination, and a Kodak Motion Corder Analyzer camera (SR-Ultra,
512 pixel × 480 pixel) to capture the flow images. The instantaneous velocity field
is obtained using proVISION-XSTM PIV software from Integrated Design Tool
(IDT), Inc. (Release 3.03). The flow was seeded with 30 µm hollow glass spheres
(3MTM ScotchliteTM S Series, settling velocity 0.19 mm s−1) that worked as tracers.
We used 32 pixel × 32 pixel interrogation windows with 50 % overlap; the spatial
resolution of the data is 0.064c. For PIV, Nd:YAG dual pulsed laser (Quantel Big Sky
Laser, ULTRA CFR, 120 mJ energy, pulse width 8 ns, pulse separation 3–19 ms)
and SharpVISIONTM camera (model-1400-DE, 1360 pixel × 1036 pixel, 70–300 mm
(f # = 5.6) macro zoom lens) were used. We varied the acquisition rate between 1
and 5 Hz. Overall error is estimated to be approximately 1 % of the instantaneous
maximum streamwise velocity. Note that we do not resolve boundary layers around
the foil and the flap. Further details on experiments are available in Shinde (2012).

2.1. Non-dimensional numbers
For a foil pitching in a free-stream flow (U∞), in addition to the geometrical
parameters of the foil, we have the following standard non-dimensional numbers:
Reynolds number (U∞c/ν, where ν is the kinematic viscosity of water), amplitude of
pitching (θmax), Strouhal number (St= f∆TEmax/U∞), reduced frequency (k= 2πfc/U∞)
and pitch-point location (1− r/c) where r is the distance along the chord line of the
pitching point from TE (see figure 1b).

For our case, free-stream velocity U∞ = 0, thus both St, k→∞, and Reynolds
number is zero. We define an alternate Reynolds number based on maximum velocity
of TE (VTEmax ) as Re= VTEmax c/ν. Note that using VTEmax as velocity scale and ∆TEmax

or c as length scale, both k and St are either constants or reduce to θmax (which is
a parameter already listed); for more details, see the online supplementary material
available at http://dx.doi.org/10.1017/jfm.2014.480.

Having a flexible flap leads to additional non-dimensional parameters. The
geometrical parameters are normalized flap length (cf /c) and normalized flap thickness
(tf /c). (Alternately, the flap length may be normalized by the y-amplitude of the TE
deflection, i.e. cf /∆TEmax = cf /2 r sin(θmax).) The mass ratio, which represents the ratio
of flap inertia to fluid inertia is ∼ρflaptf /ρ cf , where ρflap is flap material density and
ρ is fluid density.

To characterize the flexibility of the flap, we can define ‘effective stiffness’ EI∗.
In the present fluid–flexible flap interaction problem, the deflection of the flap is
determined by, in addition to the other parameters, the structural stiffness of the flap
and the fluid forces acting on the flap. If we account for all of the forces acting

http://dx.doi.org/10.1017/jfm.2014.480
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on the flap, the flap deflection can be obtained from the unsteady Euler–Bernoulli
beam equation. We expect the fluid forces on the flap to scale as ρV2

TEmax
sf cf /2. Thus,

treating the flap as a uniformly loaded cantilever beam, we get the FT deflection
as δFT = w c4

f /8EI, where w = ρV2
TEmax

sf /2 is load per unit length. We define the
‘effective’ stiffness parameter as EI∗ = cf /δFT . Substituting for δFT , we get

EI∗ = 8 EI
1
2 ρ V2

TEmax
sf c3

f

. (2.1)

Similar definitions of effective stiffness for flexible surfaces have been used (Kang
et al. 2011; Dewey et al. 2013; Shukla, Govardhan & Arakeri 2013), except that in
these cases the pressure is based on the free-stream velocity. Equation (2.1) suggests
that EI∗ can be varied in various ways: by changing EI of the flap, flap length, f
and θmax. In our experiments, the variation in EI∗ is obtained (over two orders in
magnitude) by varying θmax and f .

Treating the flap as a Euler–Bernoulli cantilever beam and considering mass of the
flap as well as the added mass of the fluid, we can calculate the natural frequencies,
fn1, fn2, etc. Another non-dimensional number related to flap stiffness can be defined in
relation to the structural frequency of the flap, f /fn1, where fn1 is the natural frequency
corresponding to the first mode of flap bending. However, f /fn1 can be written in terms
of already defined parameters, namely EI∗, cf /c and θmax.

A damping coefficient may be defined for the flap. For the flap material we are
using, structural damping effects are expected to be much smaller than the damping
due to fluid viscosity (Das, Govardhan & Arakeri 2013).

Thus, we have the following list of non-dimensional numbers relevant to the
present experiments at U∞ = 0 : cf /c, (1− r/c), θmax, mass ratio, Re and EI∗. In our
experiments, cf /c ratio is constant (=0.79), pitching point is fixed at the maximum
thickness location of the rigid foil (0.32 c from the leading edge), and mass ratio is
also fixed and is very small (=0.0017). Corresponding to the three θmax values (±10◦,
±15◦, ±20◦) and the four flapping frequencies ( f = 1, 2, 3, 4 Hz), the Reynolds
number (Re) range is 1078–8625 and the EI∗ range is between ∼0.04 and 2.30.

3. Flow structure
First, we discuss the flow corresponding to the standard case, θmax =±15◦ and f =

2 Hz. How the flow changes as θmax and f are varied is discussed in § 5.
The rigid foil pitching sinusoidally creates a spread out jet inclined to the centreline

(figure 2a) that continually and randomly changes orientation. The flow from the rigid
foil is discussed in detail by Shinde & Arakeri (2013). In dramatic contrast, for the
same pitching conditions, attaching a chordwise flexible flap to the foil creates a
coherent, undulating jet composed of vortices in a ‘reverse Bénard–Kármán vortex
street’ aligned along the centreline (figure 2b). Thus, jet deflection and meandering are
completely suppressed by chordwise flexibility. In § 5, we will show that such narrow,
unidirectional jets are obtained only for flaps with EI∗ values within a particular
range.

Rotary oscillations of the foil generate complex flap motions. The flap undergoes
very large deformations. It bends in the first mode (flap curvature is of one sign)
during some phases and in the second mode (flap curvature is of two signs) during
the other phases (figure 3a). The FT traces a distorted ‘figure-of-eight’ path about
x/c ≈ −0.6 (figure 3b). While, motion in the y direction is symmetric (about the
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FIGURE 2. (a) Instantaneous flow field for the foil without flap; TE is moving up (θmax=
±15◦, f = 2 Hz, Re = 3234). Vectors show velocity and contours show the normalized
spanwise vorticity (ω∗z =ωz/(VTEmax/∆TEmax)). Negative is clockwise vorticity and vice-versa.
The flow is inclined downwards and the vortex positions do not show any order. (b) Same
as (a) for the foil with flexible flap; at this instant FT is moving up and TE is moving
down. In contrast to the flow in (a), the addition of the flexible flap produces a strong
jet aligned along the centreline with vortices arranged in reverse Bénard–Kármán vortex
street configuration.
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FIGURE 3. Details of flap motion corresponding to the flow shown in figure 2(b). (a) Flap
profiles and airfoil chord positions at five phases over a half-cycle as the TE moves
down. The broken line indicates the undeflected flexible flap if it were stretched along the
centreline. (b) The FT locus over a cycle. Arrows indicate direction of FT motion. Grey
dots show FT position when vortex is shed (CCW, counterclockwise; CW, clockwise).

mean position), it is not so in the x direction. The amplitude of FT deflection in
the y direction is rather large compared with that in the x direction; the former is
about twice and the latter is about half of the y amplitude of the TE deflection. There
exists a phase difference between the TE and FT motion: FT trails TE by 137◦ in
the y direction. Figure 3(a) clearly shows that the flap motion is like a travelling
wave starting from TE with amplitude increasing in the downstream direction (see
supplementary movie). There is a strong coupled interaction between the flow and the
flap: flap motion is responsible for the creation of flow, and in turn, the flow affects
the flap motion. Detailed discussion of the physics of flow generation is reported in
Shinde (2012). In brief, the flow generation takes place due to the coordinated pushing
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action of the foil and the flexible flap; they draw in the ambient fluid from the front
and largely from the sides, and accelerate it downstream to form the coherent jet (see
figure 2b).

Figure 4 shows the long time mean flow data for both the foils, with and without
the flexible flap. It is evident from the velocity vector fields and the isovelocity
contour plots that the foil without a flap produces a weak, inclined mean jet
(figure 4a,c), whereas that with the flexible flap generates a strong, narrow jet
aligned along the centreline (figure 4b,d). This can also be seen in figure 4(e, f )
which show the profiles of mean velocity magnitude for the two foils. Figure 4(b)
shows that the fluid in the vicinity of flexible flap region is pulled towards and
by the flexible flap, and is pushed downstream as a narrow jet. Mean streamwise
velocity profiles for the foil with flexible flap in figure 4(g) show near-Gaussian
variation as in standard two-dimensional jets. The jet is confined mostly within a
narrow region y/c ≈ ±0.5 around the centreline. For the case with θmax = ±15◦
and f = 2 Hz, the maximum jet velocity is 136 mm s−1 (umax/VTEmax = 1.59). The
corresponding Reynolds number based on the maximum jet velocity and the jet width
at this velocity location (x/c=−1.61) is 2028.

Note that a rigid flap attached to the airfoil would produce essentially the same flow
as that of the foil without the flap; only the scale (due to increased chord length) will
be changed. In other words, a foil with a rigid flap is expected to produce a weak,
divergent jet as in figure 2(a). Our aim is to study how the jet meandering, which
is found in the case of rigid foil, is eliminated, even in the absence of a free-stream
flow, by the addition of a flexible flap.

4. Near-wake vortex dynamics and role of flexibility
In this section, we discuss the mechanisms by which a flexible flap suppresses

meandering and produces a coherent, aligned jet. Both the foils, with and without the
flexible flap, shed a pair of large counter-rotating vortices per cycle, but a coherent
jet is observed only in the former case. Everything else being the same, this stark
difference in the flows is intricately linked to the action of the flexible flap. We
identify two physical mechanisms by which meandering is overcome to produce a
unidirectional jet: shedding of the vortex at the appropriate spatial location and at an
appropriate phase in the cycle, and convection of the vortex after it is shed.

4.1. Appropriate vortex shedding
Godoy-Diana et al. (2009) show that a pitching rigid foil produces an asymmetric
or deflected jet above a critical St due to formation of vortex dipoles from two
successively shed counter-rotating vortices. One of the factors that determines dipole
formation is the inter-vortex spacing. Recently, Marais et al. (2012) found that foil
flexibility increases vortex spacing, prevents dipole formation, and essentially, inhibits
jet deflection at higher St (in effect lower free-stream speed) compared with the rigid
foil. In the present experiments, jet deflection is completely suppressed in the limit
of St→∞, zero free-stream velocity.

In our case also, the flexible flap increases the separation between successively shed
vortices compared with the rigid foil case. Figure 5 clearly shows that the addition
of the flexible flap increases the spacing by approximately 2.3 times, whereas chord
length increase is 79 %. We observe that a new vortex is shed when the FT is closest
to the TE in the x direction and when it is moving towards the centreline (see
figure 3b). Due to the bending action of the flexible flap, the newly born vortex that
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FIGURE 4. Mean velocity data for the cases shown in figure 2. Flow velocity is
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FIGURE 5. (Colour online) (a) Dye visualization for the foil without flap; the TE is
moving up. (b) Visualization for the foil with flexible flap; the FT is moving up and
the TE is moving down. In both cases, dye is released continuously from ports on both
surfaces of the foil at the maximum thickness location. Appending the flexible flap to the
foil increases the spacing between successively shed counter-rotating vortices.
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FIGURE 6. (Colour online) Dye images at several phases over one cycle. The
counterclockwise vortex (enclosed by a dashed circle) convects about a chord downstream
during this time. In (a,c,e) the TE is near the mean position. In (a,e) the TE is moving
down and in (c) it is moving up. In (b) the TE is near the bottom-extreme position and
in (d) near the top-extreme position.

is cast off from FT is shed slightly upstream compared with if the flap were rigid
as can be seen in figure 5(b). Deformation of the flexible flap increases the overall
separation between a just-shed vortex and the one shed previously, thus preventing
dipole formation.

4.2. Vortex convection
Once the vortex is shed, it has to be convected away. In the absence of a free-stream,
however, vortex convection has to be necessarily induced by the flap motion. This is
in fact the second important function of the flexible flap. Figure 6 demonstrates the
convection of a newly shed vortex in one oscillation cycle period.

To see the initial development of the vortex street, we track the positions of a
vortex from the time just after it is shed until it finally becomes part of the reverse
Bénard–Kármán vortex street, which is aligned along the centreline. Following Godoy-
Diana et al. (2009) and Marais et al. (2012), we identify the vortex position by its
centre, i.e. local peak vorticity location, [xvort(t), yvort(t)] = [x(t), y(t)]|ωz(t)peak

. We track
the paths of two successively shed counter-rotating vortices (‘CCW vortex’ and ‘CW
vortex’) over one time period (τ ). Figure 7 shows the x position (figure 7a) and the
y position (figure 7b) as functions of time of these two vortices. We take t/τ = 0
to be just after the CCW vortex is shed; the CW vortex is shed in the previous
half-cycle and is at x/c = −0.9, y/c = 0.17 at this time. The CW vortex is part of
the vortex street and is moving with constant x velocity of approximately 74 mm s−1,
i.e. approximately 1 c/τ , parallel to the centreline at y/c= 0.17. (For the foil without
the flap, it is not possible to track the vortices in a similar manner as they smear out
rapidly (figure 5a) and lose identity within a short distance.)
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±0.032 c. In (a) the black lines are fits to position data. Here H on abscissa is the time
when the TE is at the mean position and is moving down. (c) The FT locus; the dark
line corresponds to time zone I and the light line to zone II (see the text). The grey dots
indicate FT locations when the vortices are shed. Arrows indicate the direction of FT
motion. (d) Schematic of the trajectories of the two vortices. During zone I, the CCW
vortex shed away from the centreline moves towards its eventual position in zone II.

To see how the CCW vortex merges into the vortex street and continues to move
along the centreline, we divide the cycle for convenience into two time zones namely
zone I (t/τ ≈ 0–0.4) and zone II (t/τ ≈ 0.4–1.0). Figure 7(c) shows the motions of
the FT corresponding to the two time zones.

The CCW vortex is shed at around |x/c| = 0.5 (figure 7a), and at y/c = −0.3,
away from its eventual location of y/c=−0.17 (figure 7b); as discussed above, this
higher initial separation between the vortices prevents dipole formation and, thus, jet
deflection. The CCW vortex moves towards the centreline until it reaches its steady
y position at the end of zone I (see figure 7b). During zone I, figure 7(a) shows that
CCW vortex speed is lower at approximately 0.63 of its final speed. In zone II, the
steady staggered configuration is reached and the two vortices travel only in the x
direction with the same speed (figure 7a,b) forming part of the vortex street. After
being shed, a vortex travels a distance of approximately 0.26 c and takes about t/τ of
0.4 to reach its final steady speed. Figure 7(d) shows schematically the motion of the
vortices in zones I and II.

Once a vortex is shed, its subsequent motion is determined by three important
agencies: free-stream flow (if present), induced motion of downstream vortices and
flow created by the foil itself. If the vortex is not convected away either by the
free-stream flow or as in our case by the flap action, the vortex would destructively
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FIGURE 8. (Colour online) For the flow caused by pitching foil with the flexible flap,
a vortex which is just shed (shown enclosed in a grey circle) has induced velocity
contributions (e.g. VI1 , VI2 , etc.) from the vortices which are present to its left. Here VFFI
is the velocity due to the flow induced by the flexible flap and airfoil motion.

interact with the vortex which will be shed subsequently. Thus, generation of an
undeflected jet in zero free-stream condition is due to the twin actions by the flap:
one, appropriate location and phase of vortex shedding; and two, convection of
the shed vortex to make space for the new one. The online supplementary movie
demonstrates how the flexible flap performs these actions.

One useful way to think about the action of the flexible flap is as shown in figure 8.
The action of the flow created by the airfoil and flap motion can perhaps be best
explained with reference to this figure. To the left of a vortex that is just shed, we
have an array of vortices shed previously from the FT. The vortices move to the left
with a constant velocity. The motion of each vortex is due to the velocities induced by
the rest of the vortices in the wake and due to the flow induced by the motion of the
foil and the flexible flap. Treating wake vortices as point vortices, vortex convection
velocity can be written as

Vvortex(x, y, t)= VFFI(x, y, t)︸ ︷︷ ︸
Effect of flow due to foil and flexible flap

+
n∑

k=1

VIk(x, y, t)︸ ︷︷ ︸
Effect of wake vortices

. (4.1)

The first term on the right-hand side in (4.1), VFFI, represents the velocity induced
on the vortex under consideration due to the flow created by the foil and the flexible
flap motions. Note that, as discussed briefly in § 3, in the absence of free-stream flow,
the entire flow creation takes place by the motion of the foil and the flexible flap. Of
course, this induced velocity (VFFI) can be modelled using potential flow, for example,
with a panel method and with an appropriate Kutta condition. To get the flap motion
itself, the flap has to be modelled, for example, as an Euler–Bernoulli beam equation
and the full fluid–flap interaction problem has to be solved. The second term on the
right-hand side in (4.1) is the induced velocity from all of the vortices in the wake;
VIk =Γk/2πrk is the velocity induced on the vortex under consideration by kth vortex
with circulation Γk situated at a distance of rk from it and n is a sufficiently large
number of vortices in the wake. If free-stream flow is present, it would provide one
additional component in (4.1) to the vortex velocity.

The velocity fields obtained from PIV measurements give a good idea on the nature
of the flow created by the flap and foil. Figure 9(a,b) show the flow and vorticity
fields just after the CCW vortex is shed. It is important to realize here that the CCW
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FIGURE 9. (Colour online) Velocity (a,c,e) and vorticity (b,d, f ) fields at t/τ = 0 (a,b), 0.2
(c,d) and 0.42 (e, f ). The positions (shown as dots) of two vortices (enclosed in squares)
are tracked over the two time zones. (b) shows the vortex positions and flap profiles for
a few phases in zone I and (f ) the vortex positions and flap profiles in zone II.

vortex is shed almost at the correct location; and in addition, the flow around the
flap is such that it provides the convective motion to the vortex in the downstream
direction. Figure 9(c) shows, as an example, the flow field at the middle of zone I
(t/τ = 0.2), due to flap and foil motions which are responsible for this convection. At
t/τ = 0.4 and beginning of zone II, the new half-cycle is about to begin and a new
CW vortex is being formed at the FT (see figure 9e, f ). Figure 9(b, f ) depict the flap
profiles and the motions of the two vortices during the two zones. Note that in zone I
and large fraction of zone II, the FT and TE move in opposite directions (figure 9b, f ).

5. Parametric study and thrust estimation

In the previous section, we showed the crucial role of flexibility of the attached flap
in generating a coherent, unidirectional jet and, hence, thrust. Next we look at in what
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θmax f ∆TEmax ∆∗FT−xmax
∆∗FT−ymax

VTEmax V∗FT−xmax
V∗FT−ymax

Φy EI∗ Re
(Hz) (mm) (mm s−1) (deg.)

±10◦ 1 9.0 0.14 0.84 28.5 0.54 1.67 120 2.30 1078
2 9.0 0.19 1.10 57.0 1.03 2.24 156 0.57 2156
3 9.0 0.20 1.27 85.5 1.06 2.35 185 0.26 3234
4 9.0 0.17 1.13 114.1 0.93 2.43 197 0.14 4312

±15◦ 1 13.5 0.13 0.82 42.8 0.66 1.57 109 1.02 1617
2 13.5 0.20 0.96 85.5 0.92 1.77 137 0.26 3234
3 13.5 0.24 0.96 128.3 1.23 1.76 163 0.11 4851
4 13.5 0.34 1.01 171.1 1.63 2.03 162 0.06 6468

±20◦ 1 17.8 0.13 0.78 57.0 0.62 1.40 93 0.57 2156
2 17.8 0.21 0.89 114.1 0.94 1.66 120 0.14 4312
3 17.8 0.30 0.91 171.1 1.60 1.67 130 0.06 6468
4 17.8 0.45 0.91 228.1 2.58 1.85 122 0.04 8625

TABLE 1. Deflections and velocities of TE and FT, EI∗ values and Reynolds number
for the 12 cases. Here Φy is the phase difference in the y direction motion between
TE and FT; TE leads FT in all cases. Here ∆∗FT−xmax

and ∆∗FT−ymax
are respectively the

x and y amplitudes of the FT deflection, which are non-dimensionalized by the calculated
y-amplitude of FT deflection if the flap was rigid. Here V∗FT−xmax

and V∗FT−ymax
are the

maximum velocities of FT respectively in the x and y directions non-dimensionalized by
the maximum TE velocity VTEmax .

way the flap deflections and the nature of the jet change with flapping amplitude and
frequency. We observed that changing the values of these parameters greatly changed
the flap deflection profiles. Below we will show that the non-dimensional stiffness EI∗
(defined in § 2.1) is a key parameter for the present fluid–structure interaction which
dictates the flow structure and determines whether we get a coherent jet or not.

In table 1, we list the different parameter values related to TE and FT motions, and
the EI∗ and Re values for each of the 12 cases.

5.1. Flap kinematics
We observed that in all of the 12 cases studied, the FT executes ‘figure-of-eight’
motion with flap geometry becoming in general more distorted with decrease in EI∗
(with increase in flapping amplitude and frequency). Figure 10 shows the variations
in flap deformation and its motion for four representative cases. As EI∗ reduces, the
flap deformation as well as the distortion of the FT ‘figure-of-eight’ motion increase,
indicating that the flap becomes effectively more flexible. For the cases with very low
EI∗ values, the flap bends in third mode too during some phases (see, e.g. figure 10d).
Further, as the EI∗ reduces, the location about which the FT traces the ‘figure-eight’
locus moves towards the TE and the FT deflection in the x direction increases while
that in the y direction shows much less variation.

The normalized maximum FT deflection in the y direction (∆∗FT−ymax
) versus

frequency for the three θmax values is shown in figure 11. The FT deflection is
normalized by the tip deflection of a flap if it were rigid (∆FT−y−Rigidmax

). In the case
of θmax = ±15◦ and ±20◦, no peaks are observed and the normalized y-deflection
amplitude of FT is nearly constant, ∼1. For three of the four cases with θmax=±10◦,
the ∆∗FT−ymax

values are observed to be above 1, and the maximum is at f = 3 Hz.
Using the Euler–Bernoulli beam equation and treating the flap as a cantilever beam,
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FIGURE 10. Flap profiles at five phases, as the TE moves down, for (a) θmax=±10◦, f =
1 Hz, (b) ±20◦, 1 Hz, (c) ±15◦, 3 Hz, (d) ±20◦, 3 Hz. (e) FT loci for cases in (a–d) and
in figure 2(b). With reduction in EI∗, flap bending increases and ‘figure-eight’ becomes
increasingly distorted; for EI∗ = 0.06, the flap bends in third mode (d).
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FIGURE 11. (Colour online) The y amplitude of FT deflection non-dimensionalized by
the y amplitude of FT deflection if the flap was rigid, i.e. ∆FT−y−Rigidmax

.

we obtain the natural frequency for the first mode = 0.23 Hz and for the second mode
as 1.43 Hz. These values are obtained using an added mass value = 70 g distributed
uniformly on the flap. However, we cannot comment, whether the maximum at
f = 3 Hz is an indication of resonance. To do a systematic study of resonance,
experiments with a large number of flaps with different lengths and stiffnesses are
required, which will be considered in the future.

Figure 12 shows the data for FT deflection in the y and x directions versus EI∗.
Figure 12(a) shows that there is no clear trend for ∆∗FT−ymax

, but the deflections
lie in a narrow range between 0.78 and 1.27, when EI∗ varies over nearly two
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FIGURE 12. (Colour online) FT kinematic data for all 12 cases: (a) y amplitude;
(b) x amplitude. FT deflection amplitude non-dimensionalized by the y amplitude of FT
deflection if the flap was rigid, i.e. ∆FT−y−Rigidmax

.

orders of magnitude. However, the data for the maximum FT deflection in the x
direction (∆∗FT−xmax

) plotted versus EI∗ show a much larger variation (0.13–0.45)
and when plotted against EI∗ seem to lie on a single curve as seen in figure 12(b).
The x direction FT deflections increase rapidly with decreasing EI∗, consistent with
increasing distortion of the FT locus with decreasing effective stiffness. The larger
variations in FT deflections in the x direction compared with those in the y direction
are reflected in the FT velocity variations in the two directions (see table 1): variation
in V∗FT−xmax

is approximately 3 times the variation in V∗FT−ymax
. The maximum in FT

velocities in the two directions are approximately 2.5 times the TE velocity VTEmax .

5.2. Jet structure
The changes in flap deformation dictate the flow structure. In all cases studied, despite
the large variations in flap motion, only two large counter-rotating vortices are shed
every cycle; in all cases, these are shed when the FT moves towards the centreline
in the y direction and away from the TE in the x direction. However, a coherent
jet is not obtained in all cases and the deformation characteristics of the flap do
influence the nature of the flow. Figure 13 shows the flow field for the same four
cases shown in figure 10. For the highest EI∗, the flap is effectively stiff and the
jet starts meandering after travelling on the centreline for some distance (about two
chords, see figure 13a). This is similar to the rigid foil case (EI∗→∞), except that
there the meandering starts almost immediately at the TE (figure 2a). When the flap
is effectively highly flexible (large θmax and f , small EI∗), the jet moving along the
centreline spreads rapidly beyond x/c≈−2 (figure 13d). It is only within a particular
effective stiffness range of EI∗, ∼0.1–1, that deformations are optimal for generating
a coherent, orderly jet aligned along the centreline (figure 13b,c); EI∗ for the standard
case is 0.26 (figure 2b).

To calculate the spread of the jet, we define the local jet width (JW) as the distance
between the maximum and minimum mean vorticity locations. We measure the jet
spread as JW at x/c = −2.5 normalized by JW at the ‘start’ of the jet. Figure 14
shows that there is very little change in JW for the moderately stiff flaps (EI∗ ∼
0.1–1); on either side of this range, EI∗ . 0.1 and EI∗ & 1, the JW increases rapidly,
corresponding respectively to spreading and meandering jets.

For the relatively stiff case (EI∗ = 2.3), the initial vortex spacing is smaller than
the coherent jet cases which perhaps leads to the meandering jet. We do not have an
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FIGURE 13. (Colour online) Velocity–vorticity snapshots for (a) θmax = ±10◦, f = 1 Hz,
(b) ±20◦, 1 Hz, (c) ±15◦, 3 Hz and (d) ±20◦, 3 Hz. For the EI∗ = 2.30 case, the jet
meanders (a); for the EI∗= 0.06 case it rapidly spreads out beyond x/c'−2 (d). For the
other two cases, EI∗ = 0.11 and 0.57, narrow, aligned jets are obtained (b,c).

explanation for the sudden jet widening when the flap is highly flexible (EI∗ = 0.06);
although in this case we do observe that the vortex is shed closer to the leading edge
because of the very large flap deformation. For the moderately stiff flaps, it appears
that the shedding location of the vortex and its subsequent motion are just right for
producing a coherent, non-deflected jet.

This study shows that EI∗ is an important non-dimensional number in capturing the
physics of the fluid–flexible surface interaction. In a single parameter, EI∗ seems to
capture the coupling between the fluid and elastic forces on the flap, which determine
the flap deformation profiles and in turn the final flow. We have varied EI∗ only by
changing f and θmax, but we plan to conduct experiments with different flap lengths
and different EIs to establish whether EI∗ uniquely determines the flow structure. We
will know in particular if the effect of change in length of the flap is captured by
EI∗. However, we may expect the length effect not to be fully captured for very long
and very short flaps. We believe, however, that this parameter will have more general
application wherever flexible wings are found, as in birds, insects and fish.

5.3. Thrust estimation
The mean thrust generated by a flapping foil can be estimated from the wake
flow measurements using the standard integral momentum balance for a control
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FIGURE 14. (Colour online) Variation of the normalized jet width (JW∗) with EI∗. Here
JW∗ = JW2/JW1, where JW2 is jet width (defined in the text) at x/c= −2.5, and JW1
is jet width at the location where mean vorticity magnitude is maximum (usually in the
flap region). Large widening of the jet is observed for EI∗ . 0.1 and EI∗ & 1. Images
given below the JW∗–EI∗ plot show mean vorticity plots for cases representative of the
three flow regimes; these cases are highlighted by grey squares in the JW∗–EI∗ plot. Also
shown is the case for the foil without flap (EI∗→∞).

volume enclosing the foil (Anderson et al. 1998; Godoy-Diana et al. 2008; Bohl &
Koochesfahani 2009). The streamwise momentum flux at a sufficiently downstream
location is essentially equal to the mean thrust. Bohl & Koochesfahani (2009) showed
that in the case of strongly fluctuating velocity fields (e.g. those due to oscillating
foils), contributions from streamwise velocity fluctuations and pressure calculated
from the transverse velocity fluctuations (v′) can be non-negligible. Including the
corrections due to streamwise and transverse velocity fluctuations, the expression for
mean thrust coefficient is

CT =
ρ

∫ ∞
−∞

u2 dy− ρ
∫ ∞
−∞

v′2 dy

1
2
ρV2

TEmax
c

∣∣∣∣∣∣∣∣
x/c=−2.5

. (5.1)
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FIGURE 15. (Colour online) Mean thrust coefficient for all except the two extreme cases,
namely EI∗ = 2.30, θmax =±10◦, f = 1 Hz and 0.04, ±20◦, 4 Hz.

Inclusion of these corrections, mainly the fluid pressure term, essentially addresses the
concerns raised by Dabiri (2005) in estimating the thrust from the mean velocity field
data. Note, CT is defined based on maximum velocity of the TE (VTEmax ) instead of
the free-stream speed, which in our case is zero. We calculate the momentum flux at
x/c=−2.5 where the jet is well established.

The mean thrust coefficients obtained using (5.1) for the foil with the flexible flap
are plotted against EI∗ in figure 15; it is 1.91 for the standard case (θmax = ±15◦
and f = 2 Hz). Thrust is calculated for the cases for which a coherent, unidirectional
jet along the centreline is obtained. Thrust is not calculated for the two extreme
cases, namely EI∗ = 2.30, θmax = ±10◦, f = 1 Hz for which the jet meanders and
EI∗ = 0.04, θmax = ±20◦, f = 4 Hz for which the jet spreads. Thrust coefficients for
different cases with the same EI∗ are nearly the same for the lower values of EI∗.
However, the two cases for EI∗ = 0.57, corresponding to θmax =±10◦, f = 2 Hz and
θmax = ±20◦, f = 1 Hz show very different CT values. We do not know the reason
for this difference, but we do observe that in the case of θmax =±20◦, f = 1 Hz, the
phase difference between the TE and FT displacements in the y direction is the lowest
(=93◦) among all cases (see table 1). In general, the non-dimensional thrust increases
with increase in EI∗ until about EI∗ = 0.5. For EI∗ & 1, when the jets meander, we
would expect thrust to decrease, the values of which can only be obtained through
direct force measurements. We plan to make direct measurements of the unsteady
forces and torque which will clearly establish the relation between the generated
thrust and EI∗. In addition, these measurements will be useful to optimize various
parameter values such as flap length, flap stiffness and pitching-point position.

6. Conclusions
The present experiments in the limiting case of zero free-stream velocity (St→∞)

show that a purely-pitching foil with a flexible flap, of appropriate stiffness, attached
to it can generate a narrow jet, whose direction and thus its thrust are aligned along
the centreline. This is in contrast to a rigid pitching foil which produces a weak and
meandering jet (and thrust). Deformations of the flexible flap suppress meandering
by increasing the initial spacing between successive vortices and by imposing a
convective motion on the shed vortices even in the absence of free-stream velocity.
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Our results are consistent with, but add to, those of Marais et al. (2012) where
they show that flexibility increases the St (up to 1.2) at which non-deflected jets are
obtained.

The extent of flap deformation or deflection is determined both by the structural
stiffness of the flap and the fluid loading, in addition to the other parameters
involved in the fluid–flexible structure interaction. We have used a non-dimensional
‘effective stiffness’, EI∗, which incorporates the structural stiffness of the flap and the
fluid forces to characterize flap deflection. Our experiments, for EI∗ variation over
two orders of magnitude, show that coherent, unidirectional jets aligned along the
centreline are generated for those cases when the flap is moderately stiff: 0.1.EI∗.1.
Flaps with EI∗&1 (relatively stiff) produced meandering jets similar to those produced
by a rigid pitching foil and EI∗ . 0.1 (low-stiffness) flaps produced spread-out jets.

The creation of unidirectional jet and thrust in a quiescent ambient is analogous to
that obtained during hovering, for example, by a bird or an insect. The motion, pure
pitching (just rotary oscillations), of our foil is much simpler than the complex wing
kinematics in birds and insects (Ellington 1984) and can be perhaps exploited in micro
aerial vehicles to produce hovering motion. The flexible foil if oriented vertically can
produce a force in the upward direction that would exactly balance its weight. For
design, this study provides guidelines to choose the flaps with appropriate EI∗ values,
and also, the required thrust coefficients.
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